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Investigation of the subgrid-scale stress and its
production rate in a convective atmospheric
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The subgrid-scale (SGS) stress in the atmospheric surface layer is studied using meas-
urement data. Field measurements employing a novel array technique were conducted
to provide data for obtaining resolvable- and subgrid-scale variables. We analyse the
conditional SGS stress and the conditional stress production rate conditional on the
resolvable-scale velocity, which must be reproduced by the SGS model for large-eddy
simulation (LES) to predict correctly the one-point resolvable-scale velocity statistics.
The results show that both buoyancy and shear play important roles in the physics
of the SGS stress. Strong buoyancy and vertical shear associated with updrafts and
positive streamwise velocity fluctuations cause conditional forward energy transfer and
strong anisotropy in the conditional SGS stress. Downward returning flows associated
with large convective eddies result in conditional energy backscatter and much less
anisotropic SGS stress. Predictions of the conditional SGS stress and the conditional
stress production rate predicted using several SGS models are compared with
measurements. None of those models are able to predict correctly the trends of both
statistics. The Smagorinsky and one nonlinear model under-predict the anisotropy
and the variations of the anisotropy, whereas the other nonlinear model and the mixed
model over-predict both. The deficiencies of the SGS models that cause inaccurate
LES statistics, such as the over-prediction of the mean shear and under-prediction of
the vertical velocity skewness, are identified. The present study shows that analyses of
conditional SGS stress and conditional SGS stress production provide a systematic
approach for studying SGS physics and evaluating SGS models and can potentially
be used to target specific aspects of LES that are important for a given application.

1. Introduction
Large-eddy simulation (LES) has become a very important approach for computing

engineering and environmental turbulent flows (Lilly 1967; Deardorff 1970, 1972;
Moeng & Wyngaard 1984; Nieuwstadt & de Valk 1987; Schmidt & Schumann
1989; Germano et al. 1991; Mason & Thomson 1992; Wyngaard 1992; Sullivan,
McWilliams & Moeng 1994; Lesieur & Métais 1996; Meneveau & Katz 2000). LES
computes the large, or resolvable scales of turbulent flows, and models the effects of
the small, or subgrid (SGS) scales. When the filter scale is in the inertial range, as is
often the case in the interior of a turbulent boundary layer or in the fully developed
region of a free shear flow, the energy-containing scales are well resolved and most
of the turbulent stress is carried by the resolvable scales. Under such conditions,
the LES result is to some extent insensitive to the subgrid-scale model employed
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(Nieuwstadt & de Valk 1987; Mason 1994). The role of the subgrid scales is considered
to be limited to extracting energy from the resolvable scales at the correct rate (Lilly
1967; Domaradzki, Liu & Brachet 1993; Borue & Orszag 1998).

However, in LES of high-Reynolds-number turbulent boundary layers, such as the
atmospheric boundary layer (ABL), the filter scale in the near-wall region is inevitably
in the energy-containing scales because the latter scale with the distance from the
surface (Kaimal et al. 1972; Mason 1994; Peltier et al. 1996; Tong et al. 1998; Tong,
Wyngaard & Brasseur 1999). Consequently, a significant portion of the turbulent stress
must be carried by the SGS model, thereby causing strong dependence of the results
on the SGS model (Tong et al. 1999). The deficiencies in the SGS model are therefore
more likely to lead to errors in LES results in the near-wall region. For example,
LES of the unstable ABL using the Smagorinsky model over-predicts the mean shear
and the streamwise velocity variance (Nieuwstadt & de Valk 1987; Mason 1994;
Sullivan et al. 1994; Khanna & Brasseur 1997) in the surface layer, and at the same
time under-predicts the vertical velocity skewness. On the other hand, the standard
dynamic Smagorinsky model, which generally performs better than the Smagorinsky
model, under-predicts the mean shear (Porté-Agel, Meneveau & Parlange 2000).
The under resolution and the strong dependence of the LES results on SGS
models are an inherent problem in high-Reynolds-number boundary layers and
cannot be solved by reducing the filter size (Mason 1994; Peltier et al. 1996; Tong
et al. 1998, 1999).

These deficiencies in LES results have been argued to be related to the Smagorinsky
model’s being too dissipative (Mason 1994; Sullivan et al. 1994) and the dynamic
model’s being not dissipative enough (Porté-Agel et al. 2000). Various methods
for improving LES results have been developed, including stochastic backscatter
(Schumann 1975; Leith 1990; Mason & Thomson 1992), the split model of Schumann
(Schumann 1975; Sullivan et al. 1994), a nonlinear model (Kosović 1997), and the
scale-dependent dynamic Smagorinsky model (Porté-Agel et al. 2000). Mason &
Thomson (1992) argued that the problem could be addressed by simply changing the
length scale in the Smagorinsky model. They included a stochastic forcing term in
the LES equation to represent the energy backscatter process, which was absent in the
Smagorinsky model. Significant improvements in the mean velocity profile and the
streamwise velocity variance profiles were achieved. Sullivan et al. (1994) modified
the split model of Schumann (Schumann 1975), which consisted of an isotropic part
and an anisotropic part for the model SGS stress. The latter is produced only by the
mean shear strain rate. Such a formulation reduced the impact of the Smagorinsky
model on the fluctuating fields and the energy dissipation, making the smallest
resolved scales more energetic. Improvements similar to those obtained by Mason &
Thomson (1992) were achieved. Kosović (1997) constructed a nonlinear model that
includes both the strain rate and the rotation tensors based on the argument that the
SGS stress is not frame indifferent. The model yielded an improved mean velocity
profile, but also resulted in redistribution of the energy among the normal SGS stress
components. Porté-Agel et al. (2000) argued that in the surface layer the coefficients
in the dynamic Smagorinsky model were not equal at the LES and test filters. They
used a second test filter and an assumption of power-law variations to account for
this scale dependence. The results for the mean velocity profile, velocity variance
profiles, and the velocity spectra showed improvements over the standard dynamic
model. The improvements achieved by these methods demonstrated the importance
of incorporating surface-layer SGS physics into SGS models and of systematically
understanding the effects of model behaviours on LES results.



Investigation of the subgrid-scale stress and its production rate 67

Traditionally, SGS models are studied primarily in two ways: a priori and a
posteriori tests (e.g. Clark, Ferziger & Reynolds 1979; McMillan & Ferziger 1979;
Bardina, Ferziger & Reynolds 1980; Nieuwstadt & de Valk 1987; Piomelli, Moin &
Ferziger 1988; Lund & Novikov 1992; Mason & Thomson 1992; Domaradzki et al.
1993; Piomelli 1993; Härtel et al. 1994, Liu, Meneveau & Katz 1994; Mason 1994;
Meneveau 1994; Peltier et al. 1996; Juneja & Brasseur 1999; Sarghini, Piomelli &
Balaras 1999; Tao, Katz & Meneveau 2000; Porté-Agel et al. 2001; Sullivan et al.
2003). Traditional tests have contributed greatly to our understanding of the current
SGS models. However, they also have their limitations. For a priori tests, it is
difficult to predict the effects of model behaviours on LES results. For example, the
correlation between the modelled and measured SGS stress components provides
little information about model performance in a simulation. For a posteriori tests,
it is difficult to relate deficiencies of LES results to specific aspects of the model
behaviours. This is not only because the SGS stress evolves LES fields through
dynamic equations, but also because the equations are chaotic with many degrees of
freedom, making it difficult to relate the properties of the solutions to the behaviours
of the SGS terms in the equation.

In view of the difficulties in directly assessing the model effects on LES results, it is
important to use a more systematic approach for analysing SGS models. While SGS
models affect the predicted instantaneous flow fields and structures, their impact on
flow statistics is arguably the most important and should first be understood. In fact,
Pope (2000) argues that the best LES that can be achieved is one that statistically
corresponds to the true resolvable-scale fields. Although it is not practical to expect an
SGS model to predict all the statistics of the resolvable-scale fields, it should at least be
able to predict those important for specific applications (e.g. mean and r.m.s. profile,
spectra, vertical velocity skewness, etc.). Because flow statistics are often strongly
influenced by flow structures, their correct predictions will also benefit the predicted
flow structures. Therefore, an important task in improving an SGS stress model is to
understand how the SGS stress affects the resolvable-scale velocity statistics.

To this end, an analysis method relating the SGS model to LES statistics is
needed. Dynamic equations for the statistics of the resolvable-scale velocity are a
very useful choice. Pope (2000) and Langford & Moser (1999) have provided the
necessary and sufficient conditions for LES to predict correctly all one-time multi-
point joint probability density function (JPDF) of the resolvable-scale velocity: the
conditional mean of the SGS stress conditional on the entire resolvable-scale velocity
field must be reproduced by the modelled SGS stress. A model that satisfies this
condition will yield the optimal LES. This condition is an extension of that given
by Adrian (1990). However, in practice, it is not feasible to obtain this conditional
SGS stress as it requires a large number of resolvable-scale velocity fields to cover
the functional space. In the present work, we study the influence of the SGS motions
on the resolvable-scale statistics by analysing the transport equation of the one-time
one-point JPDF of the resolvable-scale velocity components.

The JPDF equation can be derived following the method given by Pope (1985) and
Meneveau (1994) using the equation for the resolvable-scale velocity
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is the SGS stress (the Leonard stress Lij =(ur
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a superscript r denotes a resolvable-scale variable, and Θ and θ are the mean and
fluctuation potential temperatures, respectively. Taking the time derivative of the
JPDF, f = 〈f ′〉 = 〈

∏3
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i − vi)〉, where f ′ is the fine-grained JPDF and the angle
brackets denote an ensemble mean, we obtain
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Substituting ∂ur
i /∂t in the right-hand side of (1.2) leads to the JPDF equation

∂f

∂t
+ vj

∂f

∂xj

=
∂

∂vi

{〈
∂τij

∂xj

∣∣∣∣ur = v

〉
f

}

+
∂

∂vi

{〈
∂pr

∂xi

∣∣∣∣ur = v

〉
f

}
− g

Θ

∂

∂v3

{〈θr |ur = v〉f }. (1.3)

The left-hand side of the equation is the time derivative and the advection in physical
space. The right-hand side is transport in velocity space of the JPDF by the SGS stress
divergence, the resolvable-scale pressure gradient, and the buoyancy force. Transport
due to viscous force is generally small at high Reynolds numbers and is omitted from
the equation. Galilean invariance of the velocity JPDF equation has been proved
(Tong 2003).

An alternative form of the equation was given by Chen et al. (2003)
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The right-hand side now represents mixed transport in physical and velocity spaces
by the conditional SGS stress and the resolvable-scale pressure and transport in
velocity space by the conditional SGS stress production rate, 〈−(1/2)Pij |ur = v〉, the
conditional resolvable-scale pressure–strain correlation, and the conditional buoyancy
force, where
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Equation (1.4) shows that the SGS stress directly affects the resolvable-scale velocity
JPDF through the conditional SGS stress and the conditional SGS stress production
and indirectly through the pressure terms. Therefore, the necessary conditions for
LES to correctly predict the velocity JPDF are that the conditional means of SGS
stress and SGS stress production rate must be reproduced by the SGS model (Chen
et al. 2003). The conditions show that the modelled and true SGS stress should be
compared statistically, not instantaneously, because a modelled SGS stress field can
satisfy these conditions, yet does not correlate well with the true SGS stress. We
note that although in LES we solve equation (1.1), the SGS model evolves the JPDF
according to equation (1.3) or (1.4).

Equation (1.4) provides a link between the SGS stress and the resolvable-scale
velocity JPDF and can be used to study the effects of the SGS stress on the JPDF. It
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also reveals two important effects of the SGS turbulence on the resolvable scales. First,
the trace of 〈Pij |ur = v〉 is the conditional energy transfer rate from the resolvable
to the subgrid scales. Therefore, equation (1.4) provides an analytical proof that the
(conditional) energy transfer is essential for the evolution of the JPDF (Chen et al.
2003), while previous studies have only argued its importance based on its role in the
inertial-range turbulence. In addition, conditional forward transfer and conditional
backscatter have qualitatively different effects on the evolution of the JPDF because
the conditional energy transfer in (1.4) plays a role similar to the diffusion coefficient
in a diffusion equation. Second, previous studies focused primarily on the SGS stress
whereas equation (1.4) also points to the importance of the SGS stress production
rate. Because the SGS stress and the SGS stress production are important for the
SGS dynamics and have clear physical meanings; their results can be interpreted
better than those for the SGS stress divergence in (1.3).

In the present study, we investigate the necessary conditions for LES to reproduce
the JPDF and the dependences of the terms in the JPDF equation on the surface layer
dynamics to gain an understanding of the SGS physics that are important for SGS
modelling and to examine SGS models. Although analyses of the terms in the JPDF
equation using experimental data are still a priori in nature, they differ qualitatively
from previous a priori analyses in several aspects. First, the JPDF-based analyses deal
with the conditional averages of the SGS stress and its production rate, which evolve
the JPDF. Consequently, there exists a close link between the conditional statistics and
the JPDF in the present analyses. On the other hand, the traditional model tests often
compute the correlation coefficient between the modelled and true SGS stress, which
generally cannot be related to LES statistics because the correlation in general cannot
be used to measure the model performance for predicting the conditional SGS stress
(and more so for the conditional SGS stress production rate). Second, the system
described by the JPDF equation is not chaotic. The solution of the JPDF equation
is a statistic (a deterministic field) and is generally stable to small perturbations in
initial and boundary conditions as well as the modelled terms. Therefore, an SGS
model that provides close approximations of the conditional SGS stress and the
conditional SGS stress production is consistent with the above mentioned necessary
conditions, thereby having the potential to predict the JPDF well and vice versa. Such
a priori analyses are in contrast with the traditional tests: because the LES equation
(1.1) is chaotic, i.e. its solution exhibits stochastic behaviours, any imperfection in
the correlation between the modelled and true SGS stress will cause the LES field
to diverge exponentially from the true resolvable-scale field, making it practically
impossible to relate the modelled instantaneous SGS stress to LES results. Third,
for the analyses based on the JPDF equation there are analytical results (e.g. Jaberi,
Miller & Givi 1996; Sabelnikov 1998) that can be used as a basis to investigate the
relationship between the SGS terms and the JPDF whereas no such analyses can be
performed for the LES equation. Therefore, a priori tests based on the JPDF equation
are fundamentally different from the traditional a priori tests and JPDF equations of
the resolvable-scale velocity provide a more rational approach for studying the effects
of the SGS stress and SGS models on the resolvable-scale statistics.

In LES employing certain SGS models, such as the Smagorinsky model, only the
deviatoric part of the SGS stress, τ d

ij = τij − τkkδij /3, is modelled. Therefore, it is also

useful to examine the corresponding production term P d
ij defined as
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Thus, Pij can be written as

Pij = P d
ij − 2

3
τkkSij , (1.7)

where Sij is the resolvable-scale strain rate tensor. Equation (1.6) shows that P d
ij

is the production rate due to the interaction between the deviatoric (anisotropic)
part of the SGS stress and the resolvable-scale velocity gradient, and −2τkkSij /3
is the production rate due to straining of the isotropic part of the SGS stress by
the resolvable-scale strain rate. Therefore, the normal components of Pij contain the
energy transfer from the resolvable to the subgrid scales, P d

αα (α = 1, 2, 3), and the
redistribution among three normal components of the SGS stress (inter-component
exchange), −2τkkSαα/3, respectively. Note that the summation of inter-component
exchange −2τkkSll/3 is zero, indicating that this term redistributes energy among
the three normal components of the SGS stress. Therefore, the anisotropy of the
normal SGS stress components is important for the evolution of the JPDF. The
shear components of P d

ij represent the production of SGS shear stress in anisotropic
turbulence due to both straining and rotation by the resolvable-scale velocity field.
The shear components −2τkkSij /3 (i �= j ), represent the production of shear stress
due to straining of isotropic SGS turbulence. Therefore the decomposition in (1.7) is
useful for further understanding the physics of Pij .

The dynamics of the SGS stress can also be examined using the SGS stress transport
equation
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The left-hand side is the time rate of change and advection. The right-hand side is the
turbulent transport, turbulent production, buoyancy production, pressure transport
and destruction and molecular dissipation (2ν(∂ui/∂xk)(∂uj/∂xk)). The buoyancy
production rate,
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has only three non-zero components PBi3; therefore, it affects only the τi3 components.
Wyngaard, Coté & Izumi (1971) showed that the shear production of the Reynolds
shear stress exceeds that of energy under all stability conditions, whereas the buoyancy
production of shear stress is larger than that of energy under neutral and stable
conditions, but falls off as the surface layer becomes more unstable. These results
suggest that the magnitude of shear to buoyancy production of the SGS stress is also
important for the behaviour of the SGS stress.

Pope (2004) discussed the issue of LES statistics and argued that the perfect LES
should correctly predict all statistics of the total velocity, not those of the resolvable-
scale velocity. He showed that the dynamic Smagorinsky model, in fact, minimized
the dependence of the predicted total stress on the filter scale, thereby improving the
predictions when the filter scale is larger than the inertial-range scales. While the
perfect LES is desirable, in many cases, the SGS model has no direct contribution
to the higher-order statistics of the total velocity. For example, an SGS stress model
only contributes to the vertical velocity skewness through its correlation with the
resolvable-scale vertical velocity, while the contribution from the SGS vertical velocity
is not predicted. More generally, the one-point PDF of the total velocity cannot be
estimated using models for SGS stress. To predict the total velocity PDF, a different
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approach that models the SGS velocity distribution is required, e.g. the filtered density
function methods (Gicquel et al. 2002; Wang, Tong & Pope 2004). Therefore, for LES
employing SGS stress models, the optimal LES can only be expected to reproduce
the true resolvable-scale statistics, which approach the total velocity statistics as the
filter scale is asymptotically small compared to the energy-containing scales.

In the present study, the subgrid-scale (SGS) stress and its production rate in the
unstable atmospheric surface layer are studied using field measurements data. The rest
of the paper is organized as follows. Section 2 outlines the field program and the array
filter technique for measuring resolvable- and subgrid-scale variables. The measured
conditional SGS stress and the conditional SGS stress production are discussed in
§ 3. Sections 4 and 5 present the SGS model predictions and their implications for
SGS modelling. Some further discussions on the relationships between the conditional
SGS stress and the conditional SGS stress production are given in § 6, followed by
the conclusions.

2. Field measurements and data analysis procedures
The field measurements for this study, named the horizontal array turbulence

study, or HATS field program, were conducted at a field site 5.6 km east-northeast
of Kettleman City, California, in the summer of 2000 as a collaboration primarily
among the National Center for Atmospheric Research, Johns Hopkins University
and Penn State University (CT was part of the Penn State group). Horst et al. (2004)
describe the field site and the data collection procedures in detail.

The field measurement design is based on the transverse array technique proposed,
studied, and first used by the Penn State group (Edsall et al. 1995; Tong et al. 1997,
1998, 1999) for surface-layer measurements in the ABL. It has subsequently been
used by several groups in the ABL over land (Tong et al. 1997, 1999; Porté-Agel
et al. 2001; Kleissl, Meneveau & Parlange 2003; Horst et al. 2004) and ocean (the
recent ocean HATS program) as well as in engineering flows (Cerutti, Meneveau &
Knio 2000; Tong 2001; Wang & Tong 2002; Rajagopalan & Tong 2003; Chen et al.
2003; Wang et al. 2004). The technique uses horizontal sensor arrays (figure 1) to
perform two-dimensional filtering to obtain resolvable- and subgrid-scale variables.
Two arrays are vertically spaced to obtain vertical derivatives. The primary horizontal
array consists of nine equally spaced sonic anemometers (Campbell Scientific SAT3)
and the secondary array has five sonics at a second height. The arrays are aligned
perpendicularly to the prevailing wind direction.

The filter operation in the streamwise direction is performed by invoking Taylor’s
hypothesis. Filtering in the transverse direction is realized by averaging the output
of the signals from the sensor array (Tong et al. 1998). For example, the transversely
filtered resolvable-scale velocity (denoted by a superscript t) is obtained as

ut
i(x, t) =

N∑
j=−N

Cjui(x1, x2 + j × d, x3, t), (2.1)

where 2N+1, Cj and d are the number of sensors on an array, the weighting coefficient
for the j th sensor and the spacing between adjacent sensors, respectively. We use
2N + 1 = 5 and 3 for filtering at the heights of the primary and secondary arrays,
respectively, to maintain the same filter size. The subgrid-scale velocity is obtained
by subtracting the resolvable-scale part from the total velocity. In the present study,
we use the arrays to approximate top-hat filters, which are the most compact type
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x3
x2
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Secondary array

Primary array

Ground

Wind direction

zp

zs

dp
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Sonic anemometer

Figure 1. Schematic of the array set-up. The secondary array (denoted by a subscript s) is
used to obtain derivatives in the vertical direction.

in physical space. Because derivatives are computed using finite differencing (with a
spacing of 4dp in the horizontal directions), which is effectively a top-hat filter, top-hat
filters provide consistency among the resolvable-scale velocity and its derivatives.

The issues in applying the array filtering technique, including the accuracy of the
array filter and the use of Taylor’s hypothesis, have been systematically studied by
Tong et al. (1998). They showed that a two-dimensional filter is a good approximation
of a three-dimensional filter. They demonstrated that among the mechanisms that
could affect the accuracy of Taylor’s hypothesis (Lumley 1965), including the effect of
different convection velocity for different wavenumber components, temporal changes
in the reference moving with the mean velocity, and the fluctuating convecting velocity,
only the last one is significant. Their analyses of the accuracy of a spectral cutoff array
filter as an approximation of a true two-dimensional filter showed that the r.m.s. values
of the filtered variables differ by less than 10 %. Because the spectral cutoff filter has
the slowest decay in physical space, it is the most difficult to approximate by the array.
Therefore, the accuracy of the top-hat filter array filter is expected to be higher. The
error associated with one-side finite differencing in the vertical direction is examined
by Kleissl et al. (2003). They evaluated the divergence-free condition for the filter
velocity field and concluded that reasonable accuracy can be achieved in computing
derivatives of filtered velocity. Horst et al. (2004) further studied various issues of
using the array technique including the aliasing errors associated with evaluating
derivatives using finite diffferencing and also demonstrated sufficient accuracy of the
technique.

Four different array configurations, shown in table 1, are employed in the HATS
program. The filter (grid) aspect ratio (	/z) ranges from 0.48 to 3.88, allowing the
effects of grid anisotropy to be examined. We refer to z as the height of the primary
array zp here and hereinafter. Array 3 is at a much higher z, therefore the effects of the
stability parameter −z/L can be examined, where L = −u3

∗Θ/kag〈u′
3θ

′〉, u2
∗ = −〈u′

1u
′
3〉
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Array 	/zp zp dp zs ds

1 3.88 3.45 3.35 6.90 6.70
2 2.00 4.33 2.167 8.66 4.33
3 1.00 8.66 2.167 4.33 1.08
4 0.48 4.15 0.50 5.15 0.625

Table 1. Configurations of the four arrays (lengths in metres).

〈u〉 u∗ ε H Duration
Data (m s−1) −z/L (m s−1) (m2 s−3) (K m s−1) (min)

a 1.42 0.34 0.15 0.003 0.02 35
b 3.56 0.22 0.33 0.031 0.17 30
c 3.65 0.21 0.36 0.039 0.20 83
d 3.25 0.24 0.36 0.041 0.24 33

Table 2. Surface-layer parameters for array 1 (	/z = 3.88) under unstable conditions. The
primary array height zp is used for z.

	/z 〈u〉 u∗ ε Total duration
Array (≈) (m s−1) −z/L (m s−1) (m2 s−3) (min)

2 2.00 3.09 0.36 0.30 0.020 257
3 1.00 4.22 0.60 0.34 0.018 591
4 0.48 2.73 0.35 0.30 0.021 60

Table 3. Surface-layer parameters for the other arrays under unstable conditions. The
primary array height zp is used for z.

(a prime denotes fluctuations), ka = 0.41 and g are the Monin–Obukov length, friction
velocity, von Kármán constant and acceleration due to gravity, respectively. The
surface layer parameters for the data sets collected using the four arrays are given in
tables 2 and 3. The results in § 3.3 show that the SGS stress for array 1, which has
the largest 	/z, is the most anisotropic and most difficult for SGS models to predict,
therefore our discussions of results focus on array 1. All array 1 data used in the
present study were collected during daytime under clear conditions and the boundary
layer was convective with a Monin–Obukov length of approximately −15 m.

Although the arrays were arranged to be perpendicular to the prevailing wind
direction, the mean wind direction for a given data section might not be exactly
perpendicular to the array. Therefore, we rotate the coordinate system and interpolate
the velocity and temperature in the Cartesian coordinate system defined by mean
wind and cross-wind directions (Horst et al. 2004). The interpolation is performed in
spectral space to avoid attenuating the high-frequency (wavenumber) fluctuations.

In the present work, we study the unstable surface layer, i.e. z/L < 0. Data
sections that are quasi-stationary are generally 30–90 min in length. In order to
achieve reasonable statistical convergence in our analysis, we combine the results of
selected data sections collected under similar stability conditions using each array
configuration. We focus on four data sections collected using array 1 (table 2). The
conditional statistics obtained using the individual data sets (not shown) are very
similar, but with varying degrees of uncertainty. Therefore, we normalize the results
for each data set using its parameters, then weight-average them according to the
number of conditional samples in each bin.
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Array σ 2
u /u2

∗ σ 2
v /u2

∗ σ 2
w/u2

∗ 〈τ11〉/σ 2
u 〈τ22〉/σ 2

v 〈τ33〉/σ 2
w 〈−τ13〉/u2

∗

1 8.17 9.55 1.52 0.35 0.21 0.89 0.73
2 12.12 13.19 1.86 0.20 0.14 0.76 0.57
3 9.53 13.58 2.19 0.17 0.09 0.54 0.34
4 10.98 10.57 1.69 0.07 0.06 0.35 0.11

Table 4. Measured Reynolds stress and mean SGS stress for the four arrays.

Because of the complexity of the variables of interest and of the conditional
sampling procedure, we are not able to provide a precise level of statistical uncertainty.
However, by monitoring the statistical scatter while increasing the data size, we
conclude that reasonable statistical convergence is achieved. An example of the
convergence process is given in figure 3. In addition, comparisons between model
predictions and measurements require only the relative magnitude of the results and
are less affected by the uncertainty. Therefore, the data size is sufficient for obtaining
reliable statistics for the analyses.

3. Results
In this section, we focus our discussions on results obtained using data from array

1. The stability parameter −z/L has an average value of 0.24. Therefore, we expect
both buoyancy and shear to affect the surface-layer turbulence. Top-hat filters in both
streamwise and cross-stream directions are used to obtain the resolvable-scale and
subgrid-scale variables with a filter size 	= 3.88z, which is in the energy-containing
range. The results for the other array configurations, i.e. different 	/z, and −z/L

(table 3), are also obtained. The results are generally similar to those for array 1.
Therefore, we only briefly discuss their differences with those of array 1 and the
influence of 	/z and −z/L. Table 4 gives the normalized Reynolds stress and the
ratios of the mean SGS stress components to the Reynolds stress components. Array
1 has the highest fraction of the vertical shear stress carried by the subgrid scales.
The deviatoric part of the measured and modelled SGS stress components are given
in table 5 and discussed in § 4.

The results for conditional SGS stress 〈τij |ur〉 are normalized by the friction velocity
u2

∗. The results for the conditional SGS stress production 〈Pij |ur〉, the buoyancy
production 〈PBij |ur〉 and the advection term 〈−ur

3∂τij /∂x3|ur〉 are normalized by the
estimated energy dissipation rate ε = φεu

3
∗/kaz, where φε = 1 − z/L for z/L � 0 as

suggested by Kaimal et al. (1972).

3.1. Normal components of 〈τij |ur〉 and 〈Pij |ur〉
The results for the conditional normal SGS stress components are plotted against the
horizontal resolvable-scale velocity, ur

1, for different values of the vertical resolvable-
scale velocity, ur

3 (figure 2). Owing to the limited data size, we are not able to include
the third velocity component in the conditional SGS stress. The data bin for the
first conditioning variable (e.g. ur

1 in figure 2a) have the width shown in the figures
(12 bins between ±2 standard deviations whereas that for the second conditioning
variable is twice as wide). Figure 3 gives a representative case (τ11) of the convergence
of the conditional SGS stress as the sample size is increased from one fifth to the full
data set. Based on such tests, we conclude that reasonable statistical convergence is
achieved. Figures 2(a) and 2(c) show that 〈τ11|ur

1, u
r
3〉 and 〈τ33|ur

1, u
r
3〉 generally increase
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Figure 2. Conditional means of the measured normal SGS stress components conditional
on the resolvable-scale velocity components. The dependence on the horizontal velocity
components is stronger for positive ur

3. Here and hereinafter ur
i is normalized by the r.m.s.

fluctuations of the total velocity σui
.

with ur
3. They also increase with ur

1 when ur
3 is positive, and depend weakly on ur

1

when ur
3 is negative, indicating that the dependence on ur

1 is enhanced by positive ur
3.

Figure 2(b) shows that 〈τ22|ur
2, u

r
3〉 increases with ur

3 and |ur
2|, but its dependence on

|ur
2| is generally weaker than that of 〈τ11|ur

1, u
r
3〉 on ur

1. The dependence of 〈τ11|ur
1, u

r
3〉

(and 〈τ22|ur
2, u

r
3〉) on ur

3 can be attributed partly to the vertical advection (Tong et al.
1999). The measured advection (not shown) is generally positive for positive ur

3 and
vice versa. This is because in the surface layer, the velocity variance varies slowly with
the distance from the ground, whereas the length scale is proportional to the distance;
therefore, the SGS eddies brought up from near the ground generally contain a larger
magnitude of SGS stress.

The anisotropic part of the conditional SGS stress, 〈τ d
ij |ur〉, which is predicted

by some SGS stress models, is also computed. The diagonal components 〈τ d
αα|ur〉

(no summation) are shown in figure 4. The off-diagonal components of 〈τ d
ij |ur〉 are

identical to those of 〈τij |ur〉. The trends of 〈τ d
αα|ur〉 are similar to those in figure 2. The

magnitudes of 〈τ d
11|ur

1, u
r
3〉 and 〈τ d

22|ur
2, u

r
3〉 become smaller compared to 〈τ11|ur

1, u
r
3〉

and 〈τ22|ur
2, u

r
3〉, and 〈τ d

33|ur
1, u

r
3〉 becomes negative owing to the strong anisotropy of

the surface layer (〈τ11〉 > 〈τ33〉). The anisotropy of 〈τij |ur〉 is further discussed in § 3.3.
Further understanding of the trends for the conditional SGS normal stress can be
gained from the results for the SGS stress production discussed in the following.

The results for the normal components of the conditional production rate 〈Pαα|ur〉
(no summation), which contains the energy transfer terms, are shown in figure 5(a–c).
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33|ur
1, u

r
3〉 generally has

the opposite sign as 〈τ33|ur
1, u

r
3〉 owing to the strong anisotropy of the SGS stress.

Similar to 〈τ11|ur
1, u

r
3〉, 〈P11|ur

1, u
r
3〉 also increases with ur

3. It also increases with ur
1

and the dependence on ur
1 is enhanced by positive ur

3 and weakened by negative
ur

3. Figure 5(c) shows that 〈P33|ur
1, u

r
3〉 decreases with ur

3 and its dependence on ur
1
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Figure 5. Conditional means of the measured SGS stress production components
conditional on the resolvable-scale velocity components.

is generally weak, especially for negative ur
3. Similar to 〈τ22|ur

2, u
r
3〉, 〈P22|ur

2, u
r
3〉 also

increases with |ur
2|. These trends can be understood in terms of the dynamics of the

unstable surface layer and are discussed below.
We first examine the decomposition of 〈Pij |ur〉 into 〈P d

ij |ur〉 and 〈− 2
3
τkkSij |ur〉.

Figure 6(a) shows that the trend and magnitude of 〈P d
11|ur

1, u
r
3〉 are similar to those

of 〈P11|ur
1, u

r
3〉 (figure 5a), indicating that the conditional spectral transfer part of

〈P11|ur〉 dominates over the redistribution part. Figure 6(b) shows that 〈P d
33|ur

1, u
r
3〉

weakly depends on ur
1 and increases with ur

3. For negative ur
3 (ur

3 < −0.5), 〈P d
33|ur

1, u
r
3〉 is

negative, indicating conditional backscatter. Notice that the dependence of 〈P d
33|ur

1, u
r
3〉

has the opposite trend to that of 〈P33|ur
1, u

r
3〉 owing to the redistribution term

〈− 2
3
τkkS33|ur

1, u
r
3〉 (see below). The conditional energy transfer rate (figure 6e) shows

a similar trend to 〈P d
11|ur

1, u
r
3〉 and is forward for ur

3 > 0. It decreases monotonically
as ur

3 moves toward negative values. It is likely that for large negative ur
3 values,

the conditional energy transfer will reverse direction (conditional backscatter). These
observations are somewhat similar to those of Piomelli, Yu & Adrian (1996) in DNS
of a plane channel flow that forward transfer and backscatter are associated with
ejections and sweeps, respectively. Sullivan et al. (2003) showed that the average
amount of backscatter increased with the ratio of the vertical-velocity integral length
scale to the filter scale. The results shown here are for the most anisotropic filter
in the present study, i.e. for the smallest length-scale ratio; therefore, for the data
collected using the other array configurations under similar stability conditions, we
expect larger amounts of conditional backscatter. Because conditional backscatter has
qualitatively different effects on the evolution of the JPDF than conditional forward
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Figure 6. Conditional means of the measured production rates of the normal SGS stress
components due to: (a, b) the deviatoric part of the SGS stress (τ d

ij ); (c, d) the isotropic

part (τkksij /3, the redistribution term); (e) the conditional energy transfer rate. Conditional
backscatter is evident in (b).

transfer, it is important for SGS models to predict conditional backscatter. Therefore,
stochastic backscatter models will not be sufficient if they do not predict correctly the
conditional backscatter.

The redistribution terms 〈− 2
3
τkkS11|ur

1, u
r
3〉 and 〈− 2

3
τkkS33|ur

1, u
r
3〉 are shown in fig-

ures 6(c) and 6(d), respectively. Figure 6(c) shows that 〈− 2
3
τkkS11|ur

1, u
r
3〉 depends

weakly on ur
1, but increases with ur

3. It has the same sign as ur
3, indicating that

τ11 loses energy to τ33 for negative ur
3 and gains energy for positive ur

3 owing
to redistribution. Figure 6(d) shows that 〈− 2

3
τkkS33|ur

1, u
r
3〉 has a similar trend and

magnitude to 〈− 2
3
τkkS11|ur

1, u
r
3〉, but has the opposite sign to ur

3, indicating that τ33

gains energy for negative ur
3 and loses energy for positive ur

3.
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To further understand the conditional SGS stress production rate and its
relationship to the surface-layer dynamics, we expand 〈P11|ur〉 and 〈P33|ur〉 into
individual SGS stress and velocity gradient terms and examine their relative
contributions. Such analyses are useful for identifying the surface-layer processes
that contribute to these statistics to guide SGS modelling. From (1.5), 〈P11|ur〉 can be
expanded as:

〈P11|ur〉 = −2

〈
τ d
11

∂ur
1

∂x1

+ 1
3
τkk

∂ur
1

∂x1

+ τ12

∂ur
1

∂x2

+ τ13

∂ur
1

∂x3

∣∣∣∣ur

〉
. (3.1)

The first term on the right-hand side of (3.1) is the conditional energy transfer from
resolvable to subgrid-scales associated with the normal strain rate and the normal
SGS stress. The second is the conditional inter-component exchange (redistribution).
The last two terms are the conditional energy transfer associated with the SGS shear
stress and strain components. Our results obtained from the data show that all the
terms on the right-hand-side of (3.1) are of the same order of magnitude; therefore,
we will discuss the results for each of them. Similarly, 〈P33|ur〉 can be expanded as:

〈P33|ur〉 = −2

〈
τ d
33

∂ur
3

∂x3

+ 1
3
τkk

∂ur
3

∂x3

+ τ31

∂ur
3

∂x1

+ τ32

∂ur
3

∂x2

∣∣∣∣ur

〉
. (3.2)

The terms on the right-hand side of (3.2) are similar to those in (3.1). However, the
results (not shown) indicate that the spectral transfer associated with the shear stress
is much smaller than that associated with the normal stress and the inter-component
exchange. This is because the derivatives of ur

3 in the horizontal directions (∂ur
3/∂x1

and ∂ur
3/∂x2) are small compared to its vertical derivative. Therefore, we will focus

on two parts of 〈P33|ur〉, 〈−2τ d
33(∂ur

3/∂x3)|ur〉 and 〈− 2
3
τkk(∂ur

3/∂x3)|ur〉, which are an
energy transfer term and the inter-component exchange term, respectively.

We now discuss the results for the components of 〈P11|ur
1, u

r
3〉 and 〈P33|ur

1, u
r
3〉.

The results for positive and negative ur
3 will be discussed separately because these

components have qualitatively different characteristics owing to the different surface-
layer dynamics associated with updrafts and downdrafts. When ur

3 is positive, vertical-
velocity energy-containing eddies move upward and are, on average, stretched in the
vertical direction owing to buoyancy acceleration, i.e. ∂ur

3/∂x3 > 0. At the same time,
continuity requires the eddies, on average, to be compressed in the horizontal direction,
i.e. ∂ur

1/∂x1 < 0 and ∂ur
2/∂x2 < 0. Therefore, the spectral transfer terms associated with

the normal strain, 〈−2τ d
33(∂ur

3/∂x3)|ur
1, u

r
3〉 and 〈−2τ d

11(∂ur
1/∂x1)|ur

1, u
r
3〉 (not shown) are

positive because τ d
33 < 0 and τ d

11 > 0 owing to the strong anisotropy in the surface layer
(〈τ11〉 > 〈τ33〉), indicating that both τ11 and τ33 gain energy (forward transfer) through
the spectral transfer associated with the normal strain rates. The inter-component
exchange terms, however, have opposite signs with 〈− 2

3
τkk(∂ur

3/∂x3)|ur
1, u

r
3〉 being

negative and 〈− 2
3
τkk(∂ur

1/∂x1)|ur
1, u

r
3〉 being positive, indicating that τ33 loses energy to

τ11 through inter-component exchange. Because 〈− 2
3
τkk(∂ur

3/∂x3)|ur
1, u

r
3〉 has a larger

magnitude than 〈−2τ d
33(∂ur

3/∂x3)|ur
1, u

r
3〉, τ33 loses more energy owing to the inter-

component exchange than it gains from the spectral transfer, resulting in negative
〈P33|ur

1, u
r
3〉 values.

The processes described above are enhanced with increasing ur
3, making the

magnitudes of 〈− 2
3
τkk(∂ur

1/∂x1)|ur
1, u

r
3〉 and 〈−2τ d

11(∂ur
1/∂x1)|ur

1, u
r
3〉 (components of

〈P11|ur
1, u

r
3〉) and 〈P33|ur

1, u
r
3〉 larger. This is due to two aspects of the surface-layer

dynamics. First, a larger ur
3 generally corresponds to stronger buoyancy acceleration,

therefore larger vertical stretching and larger magnitudes of ∂ur
3/∂x3 and ∂ur

1/∂x1
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r
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resolvable-scale velocity, which are responsible for the dependence of 〈P11|ur
1, u

r
3〉 on ur

1.

(not shown). Second, the local SGS stress is generally enhanced by positive ur
3 due

to eddies with a larger amount of SGS energy brought up from near the ground.
This is an advection effect discussed above. Therefore, 〈− 2

3
τkk(∂ur

1/∂x1)|ur
1, u

r
3〉 and

〈−2τ d
11(∂ur

1/∂x1)|ur
1, u

r
3〉 (components of 〈P11|ur

1, u
r
3〉) and the magnitude of 〈P33|ur

1, u
r
3〉

generally increase with positive ur
3.

The spectral transfer terms 〈−2τ d
33(∂ur

3/∂x3)|ur
1, u

r
3〉 and 〈−2τ d

11(∂ur
1/∂x1)|ur

1, u
r
3〉

depend only weakly on ur
1. The inter-component-exchange terms also have similar

dependences (not shown). This is because ∂ur
3/∂x3 and ∂ur

1/∂x1 have weak depen-
dences on ur

1. Consequently, 〈P33|ur
1, u

r
3〉, 〈− 2

3
τkk(∂ur

1/∂x1)|ur
1, u

r
3〉, and 〈−2τ d

11(∂ur
1/

∂x1)|ur
1, u

r
3〉 (components of 〈P11|ur

1, u
r
3〉) generally depend weakly on ur

1. This indicates
that the dependence of 〈P11|ur

1, u
r
3〉 on ur

1 shown in figure 5(a) is due to the shear
production components −2〈τ12(∂ur

1/∂x2) + τ13(∂ur
1/∂x3)|ur

1, u
r
3〉 (figure 7), which have

positive contributions to 〈P11|ur〉. Both terms depend on ur
1 because when ur

3 is
positive, a larger ur

1 on average results in a larger shear strain rate, ∂ur
1/∂x3, and

at the same time enhances the SGS shear stress component τ13. Thus, 〈P11|ur
1, u

r
3〉

is positive and generally depends on ur
1. Increasing ur

3 on average enhances the
SGS shear stress components τ13 owing to the advection effect, and enhances ∂ur

1/∂x3

owing to the large horizontal velocity deficit carried by fluid brought up from near the
ground, making the shear production of the 〈P11|ur

1, u
r
3〉 larger. Therefore, 〈P11|ur

1, u
r
3〉

generally increases with ur
3.

The results for negative ur
3 can also be understood in terms of the surface-

layer dynamics. When ur
3 is negative, the vertical-velocity energy-containing eddies

associated with the returning flow of large convective eddies move downward and
are on average compressed in the vertical direction owing to the presence of the
ground, resulting in negative ∂ur

3/∂x3 and positive ∂ur
1/∂x1 and ∂ur

2/∂x2. Therefore,
the spectral transfer associated with both the normal strain 〈−2τ d

33(∂ur
3/∂x3)|ur

1, u
r
3〉

and 〈−2τ d
11(∂ur

1/∂x1)|ur
1, u

r
3〉 are negative, indicating that both τ11 and τ33 lose energy

through spectral transfer associated with the normal strain (conditional backscatter).
Similar to the case of ur

3 > 0, the inter-component-exchange terms still have opposite
signs, but with 〈− 2

3
τkk(∂ur

3/∂x3)|ur
1, u

r
3〉 being positive and 〈− 2

3
τkk(∂ur

1/∂x1)|ur
1, u

r
3〉

being negative, indicating that τ33 gains energy from τ11 through inter-
component exchange. Because 〈− 2

3
τkk(∂ur

3/∂x3)|ur
1, u

r
3〉 has a larger magnitude than
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〈−2τ d
33(∂ur

3/∂x3)|ur
1, u

r
3〉, τ33 gains more energy than it loses due to conditional

backscatter, resulting in positive 〈P33|ur
1, u

r
3〉 values.

These processes are also somewhat enhanced by larger (negative) ur
3, although

to a much lesser extent than positive ur
3, resulting in larger magnitudes of

〈− 2
3
τkk(∂ur

1/∂x1)|ur
1, u

r
3〉 and 〈−2τ d

11(∂ur
1/∂x1)|ur

1, u
r
3〉 (components of 〈P11|ur

1, u
r
3〉) and

〈P33|ur
1, u

r
3〉. This is because a stronger downdraft (returning flow of large convective

eddies) generally produces larger vertical compression, i.e. larger magnitudes of
∂ur

3/∂x3 and ∂ur
1/∂x1. However, since the eddies carried by returning flow generally

have larger length scales, they contain smaller SGS stress (τ d
11, τ

d
33 and τkk). Therefore,

although the magnitudes of 〈− 2
3
τkk(∂ur

1/∂x1)|ur
1, u

r
3〉 and 〈−2τ d

11(∂ur
1/∂x1)|ur

1, u
r
3〉

(components of 〈P11|ur
1, u

r
3〉) and 〈P33|ur

1, u
r
3〉 generally increase with the magnitude

of ur
3, the dependence is not as strong as for the case of positive ur

3 because of
these competing effects, and because of the milder vertical compression due to the
downdrafts than that due to updrafts (buoyancy acceleration).

When ur
3 is negative, 〈P33|ur

1, u
r
3〉, 〈− 2

3
τkk(∂ur

1/∂x1)|ur
1, u

r
3〉 and 〈−2τ d

11(∂ur
1/∂x1)|

ur
1, u

r
3〉 (components of 〈P11|ur

1, u
r
3〉) generally depend weakly on ur

1 for reasons similar
to those for the case of positive ur

3. In contrast to the case of positive ur
3, the shear

production components −2〈τ12(∂ur
1/∂x2) + τ13(∂ur

1/∂x3)|ur
1, u

r
3〉 (figure 7) also depend

weakly on ur
1. This is because both the horizontal shear strain rate component,

∂ur
1/∂x3, and the SGS shear stress component, τ13, depend weakly on ur

1 as the
vertical shear is weakened by the returning flow. Therefore, 〈P11|ur

1, u
r
3〉 also depends

weakly on ur
1. The shear production has a positive contribution, which is larger than

the backscatter associated with the normal strain rates and the loss due to inter-
component exchange, resulting in positive 〈P11|ur

1, u
r
3〉. Increasing the magnitude of

ur
3 causes the shear stress components τ13 and shear strain rate component ∂ur

1/∂x3

to decrease owing to the advection effect and the horizontal velocity deficit carried
by the returning eddies. Therefore, 〈P11|ur

1, u
r
3〉 generally decreases with ur

3.
The trends for 〈P22|ur

2, u
r
3〉 (figure 5b) are generally similar to those of 〈P11|ur

1, u
r
3〉.

However, there are several differences. One is that 〈P22|ur
2, u

r
3〉 increases with |ur

2|,
because the flow is symmetric in the lateral direction. Another difference is that the
magnitude of 〈P22|ur

2, u
r
3〉 is smaller than that of 〈P11|ur

1, u
r
3〉 and is negative when ur

3

has large negative values (ur
3 < − 0.6) because the shear strain rate ∂ur

2/∂x3 is smaller
than ∂ur

1/∂x3, resulting in smaller spectral transfer associated with shear compared
to the case for 〈P11|ur

1, u
r
3〉. Thus, 〈P22|ur

2, u
r
3〉 is smaller than 〈P11|ur

1, u
r
3〉 when ur

3 is
positive and becomes negative when ur

3 is strongly negative. Therefore, when ur
3 is

negative, τ22 loses more energy due to the spectral transfer associated with normal
strain and inter-component-exchange than it gains due to spectral transfer associated
with shear.

With the above discussions on 〈Pαα|ur〉, the trends for 〈ταα|ur〉 become clearer.
Because the evolution of 〈τ11|ur

1, u
r
3〉 is dominated by 〈P11|ur

1, u
r
3〉, 〈τ11|ur

1, u
r
3〉 has

similar trends to 〈P11|ur
1, u

r
3〉. For the same reason, 〈τ22|ur

2, u
r
3〉 has similar trends to

〈P22|ur
2, u

r
3〉. However, the trends for 〈τ33|ur

1, u
r
3〉 are different from those of 〈P33|ur

1, u
r
3〉,

because buoyancy production dominates the evolution of τ33. Thus, 〈τ33|ur
1, u

r
3〉 has

similar trends to the buoyancy production rate 〈PB33|ur
1, u

r
3〉, instead of 〈P33|ur

1, u
r
3〉

(figure 8). This suggests that buoyancy effects can potentially play an important role
in models of the SGS stress.

To summarize this part of the results, when ur
3 is positive, the energy transfer

rates due to both normal and shear strain rates are positive (forward). The former
depends strongly on ur

3, but weakly on ur
1, whereas the latter depends on both. The

inter-component exchange is positive for τ11 and τ22 and is negative for τ33. When
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Figure 8. The conditional mean of the buoyancy production PB33 conditional on the
resolvable-scale velocity.

ur
3 is negative, the energy transfer due to the normal strain is negative, whereas that

due to shear strain is positive. The dependence on both ur
1 and ur

3 is weaker. The
inter-component-exchange terms have opposite signs to those for positive ur

3. These
are closely related to the surface-layer dynamics.

3.2. Shear components of 〈τij |ur〉 and 〈Pij |ur〉
The results for the conditional shear stress component 〈τ13|ur

1, u
r
3〉 are shown in fig-

ure 4(d). The magnitude of 〈τ13|ur
1, u

r
3〉 generally increases with ur

3. It also increases
with ur

1 and the dependence is enhanced by positive ur
3 and weakened by negative

ur
3. To further understand the result of 〈τ13|ur

1, u
r
3〉, we first discuss the result of

〈P13|ur
1, u

r
3〉. Figure 5(d) shows that the trends of 〈P13|ur

1, u
r
3〉 are similar to those

of 〈τ13|ur
1, u

r
3〉. The results of 〈P13|ur

1, u
r
3〉 can also be understood in terms of the

dynamics of the unstable surface layer. We examine the results of 〈P d
13|ur

1, u
r
3〉 and

〈− 2
3
τkkS13|ur

1, u
r
3〉 which are due to deviatoric and isotropic parts of the SGS stress,

respectively (figures 9a and 9b). Their magnitudes depend on ur
1 and are enhanced by

positive ur
3. The former is positive, indicating destruction of the shear stress, which has

negative values, owing to straining and rotation of the anisotropic part of the SGS
turbulence. The latter is negative and has about twice the magnitude of the former,
indicating production due to straining of the isotropic part of the SGS turbulence.

To understand 〈P13|ur〉 in more detail, we expand it as

〈P13|ur〉 = −
〈

τ11

∂ur
3

∂x1

+ τ12

∂ur
3

∂x2

+ τ13

∂ur
3

∂x3

+ τ31

∂ur
1

∂x1

+ τ32

∂ur
1

∂x2

+ τ33

∂ur
1

∂x3

∣∣∣∣ur

〉
. (3.3)

Our results obtained from the data show that the first five terms on the right-hand
side of (3.3) are small compared to the last term. This is because the derivatives of ur

1

in the horizontal directions and the derivatives of ur
3 are relatively small compared to

∂ur
1/∂x3. Therefore, we focus on the last term 〈−τ33(∂ur

1/∂x3)|ur〉.
The results in § 3.1 have shown that the SGS normal stress τ33 and the shear

strain rate component ∂ur
1/∂x3 increase with ur

3. They also increase with ur
1, but the

dependence is enhanced by positive ur
3 and weakened by negative ur

3. Therefore, the
magnitude of 〈P13|ur〉 also has similar trends. To further understand the trends of
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Figure 9. Conditional mean of the measured production rate of the shear SGS stress
component τ13 due to: (a) the deviatoric part of the SGS stress (τ d

ij ); (b) the isotropic part

(τkksij /3, the redistribution term). The deviatoric part is generally positive, therefore reduces
the SGS shear stress.

〈P13|ur〉, we rewrite 〈−τ33(∂ur
1/∂x3)|ur〉 as:〈

− τ33

∂ur
1

∂x3

∣∣∣∣ur

〉
=

〈
− 1

2
τ d
33S13

∣∣ur
〉

+
〈
− 1

2
τ d
33Ω13

∣∣ur
〉

+

〈
− 1

3
τkk

∂ur
1

∂x3

∣∣∣∣ur

〉
, (3.4)

where Ωij is the rotation tensor of resolvable-scale velocity. The first two terms
on the right-hnad side of (3.4) are the conditional shear stress production due to
straining and rotation of the anisotropic part of the SGS turbulence. The third is
the conditional shear stress production due to the straining of the isotropic part
of the SGS turbulence. The trends of 〈− 1

2
τ d
33S13|ur

1, u
r
3〉 and 〈− 1

2
τ d
33Ω13|ur

1, u
r
3〉 (not

shown) are similar to that of 〈P d
13|ur〉. Their magnitudes are nearly equal and are

approximately half of that of 〈P d
13|ur

1, u
r
3〉, indicating that the destruction of the

conditional shear stress due to rotation, and straining of the anisotropic part of
the SGS turbulence are almost equal. Therefore, 〈P d

13|ur
1, u

r
3〉 comes primarily from the

interactions of τ d
33 with the shear strain rate, S13, and the rotation sensor component,

Ω13. The trend and magnitude of 〈− 1
3
τkk(∂ur

1/∂x3)|ur
1, u

r
3〉 (not shown) are close to

that of 〈− 2
3
τkkS13|ur

1, u
r
3〉, indicating that the conditional shear stress production due

to straining of isotropic turbulence comes mainly from the interaction of τkk with the
shear strain, S13.

Similarly to 〈P13|ur
1, u

r
3〉, 〈P23|ur

2, u
r
3〉 comes mainly from the interaction between the

normal SGS stress τ33 and the horizontal shear ∂ur
2/∂x3. The results for 〈P23|ur

2, u
r
3〉

are shown in figure 10 and are similar to those of 〈P13|ur
1, u

r
3〉. The differences are

that the magnitude of 〈P23|ur
2, u

r
3〉 increases with |ur

2| because the flow is symmetric
in the lateral direction, and that the magnitude of 〈P23|ur

2, u
r
3〉 is smaller than that of

〈P13|ur
1, u

r
3〉 because the shear due to ur

2 is smaller than that due to ur
1.

The evolution of 〈τ13|ur
1, u

r
3〉 is dominated by both 〈P13|ur

1, u
r
3〉 and conditional

buoyancy production 〈PB13|ur
1, u

r
3〉 (figure 11). The conditional buoyancy production

〈PB13|ur
1, u

r
3〉 has similar trends and magnitudes to 〈P13|ur

1, u
r
3〉. Therefore, 〈τ13|ur

1, u
r
3〉

also has similar trends. Similarly, the evolution of 〈τ23|ur
2, u

r
3〉 (figure 12a) is dominated

by both 〈P23|ur
2, u

r
3〉 and buoyancy production 〈PB23|ur

2, u
r
3〉 (figure 12b), while

〈PB23|ur
2, u

r
3〉 has similar trends and magnitudes to 〈P23|ur

2, u
r
3〉. Therefore, 〈τ23|ur

2, u
r
3〉

also has similar trends.



84 Q. Chen and C. Tong

–2 –1 0 1 2
–0.4

–0.2

0

0.2

0.4

0.6

ur
2

ur
3

�
P

23
|u

r 2,
 u

r 3�
/ε

1.50

0.67

0

–0.67

–1.50

Figure 10. Conditional mean of P23 conditional on the resolvable-scale velocity
components (ur

2, u
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Figure 11. Conditional mean of the buoyancy production PB13 conditional on the
resolvable-scale velocity, which has a similar trend to that of 〈τ13|ur

1, u
r
3〉.

3.3. Anisotropy of the conditional SGS stress

An important property of the SGS stress is its level of anisotropy. Sullivan et al. (2003)
found that the mean SGS stress in the surface layer is generally close to axisymmetric
with one large eigenvalue, similar to the Reynolds stress in turbulent boundary
layers. It has been argued that the Smagorinsky model under-predicts the anisotropy
(redistribution of SGS energy among the normal components) (Kosović 1997).

The level of anisotropy of the conditional SGS stress can be characterized by
the representation in the Lumley triangle (Lumley 1978). The normalized anisotropy
tensor for 〈τij |ur〉, 〈

τ d
ij

∣∣ur
〉/

〈τkk|ur〉 = 〈τij |ur〉/〈τkk|ur〉 − 1
3
δij , (3.5)
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2, u
r
3〉.

–0.2 –0.1 0 0.1 0.2 0.3
0

0.1

0.2

0.3

ξ

η

1C

2C

2C

axi.

axi.
η = ξ

axi.
η = –ξ

iso.

Figure 13. Representation of the anisotropy tensor in the Lumley triangle for the conditional
SGS stress 〈τij |ur

1, u
r
3〉 for array 1 (	/z =3.88, −z/L = 0.24). The arrows represent the

conditioning vector (ur
1, u

r
3). The anisotropy is stronger for ur

3 > 0. The SGS stress is close
to axiysymmetric with one large and small eigenvalue for ur

1 > 0 and ur
1 < 0, respectively. 1 C,

one-component; 2 C, two-component.

can be determined by two variables ξ and η defined in terms of its invariants (Pope
2000)

6η2 = −2II =
〈
τ d
ij

∣∣ur
〉〈

τ d
ij

∣∣ur
〉/

〈τkk|ur〉2, (3.6)

6ξ 3 = 3III =
〈
τ d
ij

∣∣ur
〉〈

τ d
jk

∣∣ur
〉〈

τ d
ki

∣∣ur
〉/

〈τkk|ur〉3, (3.7)

where II and III are the second and third invariants of the anisotropy tensor. If
〈τij |ur〉 is isotropic, both ξ and η are zero. (The first invariant or trace of 〈τ d

ij |ur〉 is
always zero by definition.) The representation for the conditional SGS stress results in
figures 2 and 4 is shown in figure 13. There is a clear dependence of the anisotropy on
the resolvable-scale velocity. When ur

3 is positive, 〈τij |ur
1, u

r
3〉 is quite anisotropic. For

negative ur
1 (and positive ur

3), the points representing the anisotropy are not far from
η = −ξ , indicating that 〈τij |ur

1, u
r
3〉 is close to axisymmetric with one small eigenvalue.
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Such an SGS stress structure is probably a result of the strong buoyancy effects
causing τ33 to lose energy to the horizontal components τ11 and τ22. As ur

1 increases,
the points move toward η = ξ , indicating that 〈τij |ur

1, u
r
3〉 is close to axisymmetric

with one large eigenvalue. In addition, as ur
1 and ur

3 both increase, the points appear
to move toward the upper right-hand corner, indicating that the conditional SGS
stress is approaching the one-component limit. This is probably caused by the strong
vertical shear generating elongated structures under such conditions. For negative ur

3,
the points are closer to the origin, indicating that 〈τij |ur

1, u
r
3〉 is much less anisotropic.

The dependence on ur
1 is also weak, consistent with the results on the conditional

SGS stress in figure 4. These results show that not only is there significant anisotropy
in 〈τij |ur

1, u
r
3〉, but also there are significant variations in the level of anisotropy, which

depends on the resolvable-scale velocity. The implications of the anisotropy on LES
are discussed in § 5.

We note that the measured invariants, ξ and η, contain statistical uncertainties
due to the uncertainties in the measured conditional SGS stress. While the results
for (ξ, η) = F (ur

1, u
r
3) are well behaved (surfaces with bumps due to uncertainties),

data points with large but similar (ur
1, u

r
3) can appear at quite different places in

the invariant map. This is a manifestation of the uncertainties because the inverse
relationship of (ξ, η) = F (ur

1, u
r
3) is shown in the map, suggesting that the results

of the invariants for large ur
1 and ur

3 fluctuations are sensitive to the uncertainties
in the conditional SGS stress. The sensitivity appears to be higher when ur

3 is
negative, at which the magnitude of the conditional SGS stress is small (larger relative
uncertainties). Nonetheless, the general trends of the dependence of the anisotropy
on the velocity fluctuations are clear on the map.

The results discussed above are for 	/z = 3.88 and −z/L =0.24 (array 1). Sullivan
et al. (2003) show that the non-dimensional SGS stress results collapse when plotted
as a function of the ratio of the vertical-velocity length scale to the filter size. To
examine the effects of 	/z and −z/L we also obtain the results for the other array
configurations. The results for 〈τij |ur

1, u
r
3〉 are qualitatively similar to those for array 1,

with the dependence on ur
3 generally stronger and the dependence on ur

1 generally
weaker. The levels of the anisotropy of 〈τij |ur

1, u
r
3〉 for different array configurations

are shown in figure 14. When −z/L is fixed, reducing 	/z (from 2.00 for array 2
to 0.48 for array 4) has essentially no effects on shear and buoyancy. However,
an anisotropic grid inherently trends to result in anisotropic SGS stress through
anisotropic filtering. Therefore, there is a slight decease in anisotropy in 〈τij |ur

1, u
r
3〉

associated with the filter anisotropy. Furthermore, near the surface, anisotropic
SGS eddies are affected more strongly by the presence of surface, i.e. the vertical
compression due to the returning flows (ur

3 < 0) associated with the large convective
eddies. The compression effects for array 4 are weaker than those for array 2, resulting
in fewer points for the axisymmetric SGS stress with one small eigenvalue (η = −ξ ).
A comparison of the levels of anisotropy for array 2 (	/z = 2.00, −z/L =0.36) and
array 3 (	/z = 1.00, −z/L =0.60) shows that 〈τij |ur

1, u
r
3〉 for array 3 is less anisotropic

than that for array 2, and has very few points near the line of axisymmetric SGS
stress with one small eigenvalue (η = −ξ ). The height of array 3 is larger than that
of the array 2 (table 1), corresponding to a larger −z/L and a smaller 	/z. With
a larger −z/L, the effects of buoyancy are enhanced, but the effects of shear are
weakened. These competing effects result in more points for axisymmetric SGS stress
with one large eigenvalue (η = ξ ). A smaller 	/z for array 3 slightly reduces the level
of anisotropy in 〈τij |ur〉 and the compression effects (ur

3 < 0), resulting in fewer points
for axisymmetric SGS stress with one small eigenvalue (η = −ξ ). Among the four
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Figure 14. The Lumley triangle representation of the conditional SGS stress from other array
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(c) array 4 (	/z = 0.48, −z/L = 0.35). The arrows represent the conditioning vector (ur
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r
3).

arrays, array 1 has the largest 	/z and the smallest −z/L, and consequently has the
highest level of anisotropy and the strongest compression effects associated with the
returning flow of large convective eddies. Therefore, we expect that the SGS stress
and its production rate for array 1 are the most challenging to predict by SGS models.
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〈τ d
11〉/u2

∗ 〈τ12〉/u2
∗ 〈τ13〉/u2

∗ 〈τ d
22〉/u2

∗ 〈τ23〉/u2
∗ 〈τ d

33〉/u2
∗

τ d
ij 0.79 −0.02 −0.73 −0.04 −0.06 −0.74

τ
smg
ij 0.02 −0.01 −0.34 0.02 0.01 −0.02

τ n1
ij 1.15 −0.04 −0.13 −0.05 0.03 −1.10

τmix
ij 1.16 −0.04 −0.34 −0.03 0.04 −1.12

τ n2
ij 0.39 −0.01 −0.33 0.17 0.01 −0.54

Table 5. Measured and modelled deviatoric SGS stress for array 1.

Anisotropic grids (refined in the vertical direction), which are often used near the
surface to match the flow interior with the surface (e.g. Mason 1994), are therefore of
importance. In the following section, we test SGS stress models using data obtained
using array 1.

4. SGS stress model predictions
The necessary conditions for predicting the JPDF can be used to test SGS models.

In this section, we compute the model predictions of 〈τij |ur〉 and 〈Pij |ur〉 and compare
them to the experimental results for array 1 (	/z =3.88, −z/L = 0.24) presented in
§ 3. We consider the Smagorinsky model, the nonlinear model of Leonard (1974), the
mixed model (Vreman, Geurts & Kuerten 1997), and the nonlinear model of Kosović
(1997). The average values of the measured and modelled mean deviatoric SGS stress
components are given in table 5.

4.1. Smagorinsky model

The Smagorinsky model is given by Smagorinsky (1963) and Lilly (1967).

τ
smg
ij = −2νT Sij = −2(Cs	)2(2SmnSmn)

1/2Sij , (4.1)

where Cs = 0.154 is the Smagorinsky constant for a box filter. In this work, we
determine Cs by matching the mean energy transfer rate, i.e. Cs = 〈P d

ii 〉/〈P smg
ii 〉.

The mean normal SGS stress components are severely under-predicted by the
Smagorinsky model and the mean shear stress 〈τ smg

13 〉 is under-predicted by a factor
of two. The conditional mean of the model predictions, 〈τ smg

ij |ur〉 and 〈P smg
ij |ur〉

is compared with the conditional mean of the deviatoric part of the SGS stress
〈τ d

ij |ur〉 obtained from the data, because the Smagorinsky model predicts only this

part. The predicted normal components of the conditional SGS stress, 〈τ smg

11 |ur
1, u

r
3〉

(figure 15a) and 〈τ smg

33 |ur
1, u

r
3〉 (figure 15c) have weaker trends and smaller magnitudes

compared with the measured 〈τ d
11|ur

1, u
r
3〉 (figure 4a) 〈τ d

33|ur
1, u

r
3〉 (figure 4c). The trends

of the production term 〈P smg

11 |ur
1, u

r
3〉 (figures 16a vs. 6a) are predicted better than

those of 〈τ11|ur
1, u

r
3〉. However, the magnitudes are under-predicted (in addition to no

conditional backscatter). Since correct prediction of 〈P d
33|ur〉 is essential to reproduce

the PDF of the vertical resolvable-scale velocity, we plot the results using ur
3 as the

independent variable (figure 17a). The magnitudes of 〈P d
33|ur

1, u
r
3〉 are under-predicted

by a factor of two compared with measurements (figure 17b), probably because the
magnitude of the 〈τ d

33|ur
3〉 is under-predicted by the model. The trend of the SGS shear

stress component 〈τ smg

13 |ur
1, u

r
3〉 (figure 15d) compares reasonably well with 〈τ13|ur

1, u
r
3〉

(figure 4d). However, the magnitude is under-predicted by a factor of two. The
corresponding production rate 〈P smg

13 |ur
1, u

r
3〉 (figures 16b vs. 9a) is poorly predicted
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Figure 15. Predicted conditional SGS stress using the Smagorinsky model conditional on
the resolvable-scale velocity. Only the trend of 〈τ13|ur
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3〉 is predicted reasonably well.
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Figure 16. Predicted conditional SGS stress production using the Smagorinsky model
conditional on the resolvable-scale velocity. Only the trend of 〈P d

11|ur
1, u

r
3〉 is predicted

reasonably well.

both in terms of magnitude and trend. Therefore, it appears that the standard
Smagorinsky model can predict the trends of some SGS shear stress components, but
not the normal components, and can predict the trends of some normal components
of conditional SGS stress production, but not the shear components. The magnitudes
of these components are generally poorly predicted.

The Smagorinsky model predictions can be understood in terms of the surface-
layer dynamics and the model ingredients. The results in § 3 show that although
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Figure 17. Predicted conditional SGS stress production of τ33 using the Smagorinsky model
conditional on the resolvable-scale velocity.

the evolution (production) of 〈τ d
11|ur

1, u
r
3〉 involves ∂ur

1/∂x1, ∂ur
1/∂x2 and ∂ur

1/∂x3, the
shear strain rate component ∂ur

1/∂x3 has the most important contribution. However,
〈τ smg

11 |ur
1, u

r
3〉 is modelled using only ∂ur

1/∂x1. Because ∂ur
1/∂x1 and ∂ur

1/∂x3 have very
different behaviours in the surface layer (not shown), neither the magnitude nor trend
of 〈τ smg

11 |ur
1, u

r
3〉 are predicted well. The situation is similar for 〈τ smg

22 |ur
2, u

r
3〉. The normal

component 〈τ smg

33 |ur
1, u

r
3〉 is also not predicted correctly because the model does not

take into account the influence of buoyancy. The predicted trend of 〈τ13|ur
1, u

r
3〉 is

somewhat better because the model uses ∂ur
1/∂x3, which is also contained in P13;

however, because 〈τ smg

13 |ur〉 does not include the effect of buoyancy, the magnitude is
not predicted well.

The Smagorinsky model prediction of the anisotropy tensor is obtained by using
the modelled 〈τ d

ij |ur〉 and the measured conditional SGS energy, i.e. it is assumed that
the model for the SGS energy used in combination with the Smagorinsky model is
accurate. The data points in figure 18(a) are much closer to the origin than are the
results in figure 13, indicating that the level of anisotropy is severely under-predicted.
This is perhaps a reflection of the properties of the resolvable-scale strain rate tensor.

Another variation of the Smagorinsky model uses the SGS kinetic energy to
obtain eddy viscosity (Schumann 1975), νT =Ce	e1/2 (e is the SGS kinetic energy).
This model has been used extensively in large-eddy simulation of the atmospheric
boundary layer (Moeng 1984; Shaw & Schumann 1992; Mason 1994). We also
computed the predictions of 〈τ d

ij |ur〉 and 〈P d
ij |ur〉 using this model. The results are

close to those given by (4.1), probably because they both use eddy viscosity and the
resolvable-scale strain rate.

4.2. Nonlinear model

Bardina, Ferziger & Reynolds (1980) proposed a similarity model, which is based on
the scale invariance of inertial-range turbulence. It assumes that the instantaneous
SGS stress has similar structures at different scales. The model involves two filters
with different filter sizes. Owing to the limitation of the array configuration, we cannot
perform this double filtering to test the model. However, the data set allows us to test
the nonlinear model, which is the first-order approximation of the similarity model
(Leonard 1974; Clark et al. 1979).

τn1
ij = 1

12
	2 ∂ur

i

∂xk

∂ur
j

∂xk

, (4.2)
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Figure 18. The Lumley triangle representation of the conditional SGS stress from SGS
models: (a) the Smagorinsky model; (b) the Nonlinear model; (c) the deviatoric mixed model;
(d) Kosović’s nonlinear model. The arrows represent the conditioning vector (ur

1, u
r
3).

The nonlinear model under-predicts the energy transfer rate by a factor of two and
the SGS kinetic energy by 23 % (〈τ n1

kk 〉/u2
∗ = 4.29 vs. 〈τkk〉/u2

∗ = 6.27). The normal mean
SGS stress components are generally under-predicted (can be obtained from table 5),
but their deviatoric parts are over-predicted (table 5). The conditional SGS stress
component 〈τ n1

11 |ur
1, u

r
3〉 (figure 19a) and 〈τn1

22 |ur
2, u

r
3〉 (not shown) are only slightly

under-predicted whereas 〈τn1
33 |ur

1, u
r
3〉 (not shown) are under-predicted by a factor of

two. The model also predicts the SGS shear stress 〈τ n1
13 |ur

1, u
r
3〉 poorly both in terms

of the trend and magnitude. On the other hand, the trends for the conditional SGS
stress production rate components are predicted quite well (〈P n1

11 |ur
1, u

r
3〉 is shown in

figure 19b). Their magnitudes are under-predicted by a factor of two except that of
〈P n1

22 |ur
2, u

r
3〉. Matching the mean energy transfer rate by changing the model coefficient

improves the predictions for 〈Pij |ur〉, but causes the magnitude of the conditional
SGS stress to be over-predicted. Therefore, the nonlinear model also cannot predict
the conditional SGS stress and its production rate at the same time.

The nonlinear model predictions can also be understood in terms of the
model ingredients and the production of the SGS stress. Because 〈τ n1

11 |ur〉 involves
∂ur

1/∂x1, ∂ur
1/∂x2, and ∂ur

1/∂x3, which also appear in 〈P11|ur
1, u

r
3〉, its trend is better

predicted. The situation is similar for 〈τn1
22 |ur

2, u
r
3〉. The modelled component 〈τn1

33 |ur
1, u

r
3〉

does not include the dominant influence of buoyancy, thus, 〈τ33|ur
1, u

r
3〉 is poorly

predicted. Although 〈τ n1
13 |ur

1, u
r
3〉 involves ∂ur

1/∂x3, it is also related to ∂ur
1/∂x1 and

∂ur
3/∂x3 which are likely to introduce spurious dependence on ur , therefore, 〈τ13|ur

1, u
r
3〉

is also poorly predicted (figure 19c).
Unlike the Smagorinsky model, the nonlinear model (figure 18b) over-predicts

the level of anisotropy. The results are still close to either η = −ξ or η = ξ , i.e.
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Figure 19. Predicted conditional SGS stress and conditional SGS stress production using the
nonlinear model conditional on the resolvable-scale velocity. Both 〈τ11|ur

1, u
r
3〉 and 〈P11|ur

1, u
r
3〉

are predicted reasonably well.

axisymmetric with one small or large eigenvalue, but are much closer to the two-
component axisymmetric or the one-component limits. The lowest predicted level
of anisotropy is comparable to the highest measured level. These trends perhaps
occur because the nonlinear model contains the resolvable-scale rotation tensor, and
therefore contains the effects of the mean rotation.

4.3. The mixed model

The above results show that the Smagorinsky model and the nonlinear model under-
and over-predict the anisotropy of the conditional SGS stress, respectively. Thus, a
mixed model combining these two models (the term ‘mixed model’ is originally used
as the combination of the similarity model and Smagorinsky model):

τmix
ij = 1

12
	2 ∂ur

i

∂xk

∂ur
j

∂xk

− 2(Cs	)2(2SmnSmn)
1/2Sij (4.3)

can potentially provide improved predictions. The results of Vreman et al. (1997)
show that this model is better than that of the nonlinear model or Smagorinsky
model alone in the large-eddy simulation of a turbulent mixing layer. Here we also
test this model. We determine the model coefficients Cs by matching the mean energy
transfer rate, i.e. letting 〈Pii〉 = 〈P mix

ii 〉. The results show that the normal components
of SGS stress, 〈τ11|ur

1, u
r
3〉 and 〈τ22|ur

2, u
r
3〉, and their production rate, 〈P11|ur

2, u
r
3〉

and 〈P22|ur
2, u

r
3〉, are generally predicted well. However, the vertical components of

〈τij |ur
1, u

r
3〉 and 〈Pij |ur

1, u
r
3〉 are under-predicted. For example, comparisons between

figures 20(a) and 4(d) and between figures 20(b) and 5(d) show that 〈τ13|ur
1, u

r
3〉 and
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Figure 20. Predicted conditional shear SGS stress 〈τ13|ur
1, u

r
3〉 and the conditional

production 〈P13|ur
1, u

r
3〉 using the mixed model conditional on the resolvable-scale velocity.

〈P13|ur
1, u

r
3〉 are under-predicted. The anisotropy (not shown) is very similar to that of

the nonlinear model. Therefore, a linear combination of the nonlinear model and the
Smagorinsky model does not significantly improve the predicted conditional means.
A problem for this mixed model is that the nonlinear model predicts the total SGS
stress, but the Smagorinsky model predicts only the deviatoric part. This suggests that
a combination of the deviatoric part of the nonlinear model and the Smagorinsky
model might be useful. Therefore, we rewrite the mixed model as:

τmix
ij = 1

12
	2

{
∂ur

i

∂xk

∂ur
j

∂xk

− 1

3

∂ur
m

∂xk

∂ur
m

∂xk

δij

}
− 2(Cs	)2(2SmnSmn)

1/2Sij . (4.4)

The deviatoric mixed model not only predicts well the normal components of
SGS stress, 〈τ d

11|ur
1, u

r
3〉 and 〈τ d

22|ur
2, u

r
3〉, and their production rates, 〈P d

11|ur
1, u

r
3〉 and

〈P d
22|ur

2, u
r
3〉, but also predicts well 〈τ d

33|ur
1, u

r
3〉 (figure 21a) and 〈P d

33|ur
1, u

r
3〉 (figure 21b),

which are under-predicted by the original mixed model. The SGS shear stress
production 〈P mix

13 |ur
1, u

r
3〉 (figure 21c) is also better predicted than that in figure 20(b).

Unfortunately, 〈τ13|ur〉 (identical to the mixed model prediction shown in figure 20a)
remains to be improved, which is a very important component for LES in the surface
layer. The predicted anisotropy (figure 18c) using the deviatoric mixed model is
stronger than measurements, but is improved over that of the nonlinear model. The
mixed model over-predicts the (intrinsic) anisotropy, but under-predicts 〈τ13|ur

1, u
r
3〉,

suggesting that the directions of the principal axes of 〈τij |ur
1, u

r
3〉 are not predicted

well. This is in contrast to the Smagorinsky model which under-predicts both. We also
experimented by changing the ratio of the two model coefficients (strictly speaking,
the coefficient for the nonlinear part is fixed by the filter type) with little effect on the
anisotropy.

Another type of cancellation between the Smagorinsky model and the similarity
model (Bardina et al. 1980) was observed by Liu, Katz & Meneveau (1999) in rapidly
strained homogeneous turbulence. There, the under-prediction by the Smagorinsky
model and the over-prediction by the similarity model of the mean spectral energy
transfer rate during straining were partially cancelled when a mixed model was used.
Therefore, it appears that various kinds of opposing trends of the Smagorinsky model
and the similarity (and nonlinear) model can be partially cancelled by using a mixed
model.
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Figure 21. Predicted conditional SGS stress and conditional SGS stress production using the
deviatoric mixed model conditional on the resolvable-scale velocity. Note that the predicted
〈τ13|ur

1, u
r
3〉 is identical to that of the mixed model.

4.4. Kosvić’s nonlinear model

Kosović (1997) proposed another nonlinear model:

τ n2
ij = −(Cs	)2

{
2(2SmnSmn)

1/2Sij + C1

(
SikSkj − 1

3
SmnSmnδij

)
+ C2(SikΩkj − ΩikSkj )

}
, (4.5)

where Cs, C1 and C2 are model constants, which are determined here by matching
the mean energy transfer rate, i.e. letting 〈P d

ii 〉 = 〈P n2
ii 〉 while maintaining the ratios of

their original values in Kosović (1997). The first part of this model is essentially the
Smagorinsky model. By setting C2 = 0, this model is essentially the deviatoric mixed
model. A comparison between the results of this model (results not shown) and the
deviatoric mixed model shows that the latter predicts 〈τ13|ur

1, u
r
3〉 (figure 22) better,

but the rest of the components of the conditional SGS stress and the conditional
SGS stress production are less well predicted. Therefore, this nonlinear model has
a somewhat more balanced overall performance. Like the Smagorinsky model, this
nonlinear model under-predicts the magnitude of the conditional SGS stress (by
approximately 50 %) when the mean energy transfer is matched. This is probably
because this model over-predicts the correlation between the SGS stress and the
strain rate. The level of anisotropy of 〈τij |ur

1, u
r
3〉 (figure 18d) is also under-predicted,

but the prediction is improved over that of the Smagorinsky model.

5. Effects of SGS model deficiencies on LES results
The measured conditional SGS stress and the SGS stress production and the model

predictions can be used to identify model deficiencies that cause inaccuracies in LES
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Figure 22. Predicted conditional shear SGS stress 〈τ13|ur
1, u

r
3〉 using Kosvić’s nonlinear

model conditional on the resolvable-scale velocity, which is improved over the mixed model.

results. Previous studies have shown that the Smagorinsky model over-predicts the
mean shear and the streamwise velocity variance near the surface (Mason & Thomson
1992; Sullivan et al. 1994). We argue that these inaccuracies are at least partly due
to the under-prediction of the anisotropy of the SGS stress and its variations in
the near-wall region. In the atmospheric boundary layer (ABL), the vertical shear
stress component is determined by the geostrophic conditions and the mean shear
(Panofsky & Dutton 1984; Wyngaard 1992), which are a combination of the large-
scale pressure gradient and the Coriolis force, therefore a simulation tends to adjust
itself to satisfy these conditions. Because the anisotropy of the SGS stress (figure 13)
is under-predicted, the simulation must generate a larger strain rate to produce the
correct SGS shear stress, thereby over-predicting the mean shear. In addition, the
larger strain rate will cause over-prediction of the production of the streamwise
velocity variance, −〈ur′

1 ur′
3 〉(∂U1/∂x3), therefore the streamwise velocity variance itself,

where ur′
i is the fluctuation of ur

i . Furthermore, the conditional variations of the
anisotropy (the SGS shear stress) are also severely under-predicted, further reducing
the transfer of the streamwise velocity variance to the subgrid scales.

The stochastic backscatter model of Mason & Thomson (1992) introduces
additional energy (on average) into the resolvable scales through random forcing,
at the same time increasing the dissipation by eddy viscosity to maintain the energy
balance. In doing so, the model is able to predict τ13 and anisotropy better without
generating an excessive strain rate. In the split model of Sullivan et al. (1994), an
increasing part of τ13 is produced by the mean shear as the surface is approached;
therefore the results are less affected by the inability of the Smagorinsky model to
predict the anisotropy. The nonlinear model of Kosović (1997) is also capable of
producing a higher level of anisotropy (figure 18d) and gives improved LES results.
Therefore, it appears that the anisotropy of the SGS stress is important for the correct
prediction of the mean shear and the streamwise velocity variance.

Another important surface-layer statistic is the vertical velocity skewness, which
is under-predicted by LES using the Smagorinsky model (Lemone 1990; Moeng &
Rotunno 1990). This can be examined by considering the conditional SGS stress
〈τ33|ur

3〉 and the SGS stress production 〈P33|ur
3〉, which appear in the equation for the
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resolvable-scale vertical velocity PDF

∂fur
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+ v3
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3

∂x3
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〉
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∣∣ur
3 = v3

〉
fur

3
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〉
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Θ

∂

∂v3

{〈
θr

∣∣ur
3 = v3

〉
fur

3

}
, (5.1)

where fur
3
= 〈δ(ur

3 − v3)〉. The mixed transport terms due to the conditional SGS stress
and the resolvable-scale pressure are expected to diminish with the filter scale, whereas
the terms due to the conditional pressure–strain correlation and the conditional SGS
stress production are expected to be invariant for inertial-range filter scales.

The pressure–strain correlation is associated with return to isotropy and partially
counters the production. Therefore, the dominant term in the equation is expected
to be the conditional SGS stress production. In a quasi-stationary and horizontally
homogeneous ABL there is a balance primarily among advection, transport due
to conditional pressure–strain correlation, and transport due to the conditional SGS
stress production. Sabelnikov (1998) analysed the PDF equation for scalar fluctuations
generated by a constant mean scalar gradient and stationary isotropic turbulence and
provided a self-similar relationship between the scalar PDF and the conditional
scalar dissipation, which plays a similar role to P33 in (5.1). He showed that for a
conditional dissipation independent of the scalar value, the scalar PDF is Gaussian.
If the conditional dissipation increases with the scalar fluctuations, the PDF is super-
Gaussian and vice versa. Because of the similarities between (5.1) and the scalar
PDF transport equation, these trends are expected to hold qualitatively for (5.1).
Therefore, there exists a direct link between the resolvable-scale vertical velocity
PDF and 〈P33|ur

3〉 for a stationary ABL. Physically, to maintain a longer (or higher)
tail of the PDF, the SGS turbulence must extract more energy from the resolvable
scales when the velocity fluctuations are large. Figure 17(b) shows that the measured
〈P33|ur〉 increases with ur

3, therefore is asymmetric with respect to ur
3. Consequently,

the positive side of fur
3
is higher than the negative side, resulting in a positive skewness.

On the other hand, the prediction of the Smagorinsky model is much less dependent
on ur

3, and consequently will result in a smaller skewness. Therefore, the under-
prediction of the vertical velocity skewness is probably due to the inability of the
model to predict the asymmetry in 〈P33|ur

3〉. The specific model deficiencies identified
here can be used to guide development of improved SGS models that will correctly
predict these statistics. The analyses in this section and § 3 can serve as examples for
studying aspects of SGS turbulence and SGS models that are important for specific
applications.

We note that previous a priori tests, especially those correlating the modelled
to the true SGS stress, have provided little information about how SGS models
will perform in a simulation. For example, the Smagorinsky model has very low
correlation coefficients with the true SGS stress, but performs quite well in LES
of isotropic turbulence whereas the similarity model correlates well with the true
stress, but may cause simulations to become unstable. The difficulty in interpreting
a priori test results and model performance in simulations is partly because there
is no equation relating the tests results to LES statistics. In addition, owing to the
chaotic nature of the LES equations, a high (unless perfect) correlation between the
modelled and true SGS stress cannot guarantee accurate LES statistics. Another
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problem of these a priori tests is that they focused solely on the SGS stress whereas
equation (1.4) shows that the SGS stress production rate is also important. In the case
of homogeneous turbulence, the influence of the conditional SGS stress vanishes. In
such flows, the conditional mean SGS energy transfer rate (near the mean velocity)
plays an dominant role in determining the lower-order LES statistics. Therefore, the
Smagorinsky, whose coefficient is determined by matching the inertial-range energy
transfer rate to the theoretical values, performs quite well in LES of homogeneous
turbulence with a well-resolved energy-containing range despite the low correlation
with the true SGS stress. On the other hand, the similarity model under-predicts the
(mean and conditional) energy transfer rate, therefore does not perform well (in fact
might not be used alone) despite its relatively high correlation with the true SGS
stress. In inhomogeneous flows, both the conditional SGS stress and the conditional
SGS stress production rate are important. The mixed model makes use of the abilities
of the Smagorinsky model to predict the mean energy transfer and of the similarity
model to predict the SGS stress, resulting in improved performance. Therefore,
a priori tests based on the JPDF equation differ fundamentally from the traditional
tests and can provide valuable information about model performance.

6. Further analyses of 〈τij |ur〉 and 〈Pij |ur〉
The results in the present study for the conditional SGS stress 〈τij |ur〉 and

conditional SGS stress production rate 〈Pij |ur〉 show that there are similarities
between their trends. The deviatoric parts of 〈τij |ur〉 and 〈Pij |ur〉 (not shown) also
have similar dependence on ur . Wyngaard (1992) showed that the Reynolds shear
stress budget in the unstable surface layer is generally in local balance among
shear production, buoyancy production, and pressure destruction, whereas turbulent
transport is negligible. The (slow) pressure destruction term is usually modelled using
Rotta’s (1951) ‘return-to-isotropy’ model,

1

ρ0

〈
ui

∂p

∂xj

+ uj

∂p

∂xi

〉
∼

〈uiuj 〉 − 1
3
〈ukuk〉δij

tl
, (6.1)

where tl is a time scale, which is of the order of the integral time scale. Therefore, we
may expect some similarities between 〈uiuj 〉 − 1

3
〈ukuk〉δij and the combination of the

shear and buoyancy production. Wyngaard (2004) suggests that the balance between
the deviatoric SGS stress and the production can be given as

τmod
ij

t	
= P a

ij , (6.2)

where t	 is a turbulent time scale and P a
ij =Pij − 1

3
Pkkδij is the anisotropic part of

the SGS stress production tensor. Because P a
ij contains τij , this relationship could

potentially be used as an algebraic SGS model. To investigate this potential, we study
the geometric alignment and eigenvalue relationship between 〈τ d

ij |ur〉 and 〈P a
ij |ur〉.

The effects of advection ur
k(∂τ d

ij /∂xk) and buoyancy can also be analysed by adding
corresponding terms to the right-hand side of (6.2).

The eigenvalues of the conditional SGS stress tensor, 〈τ d
ij |ur〉, are denoted as ατ , βτ

and γτ , ordered such that ατ � βτ � γτ , and the corresponding unit eigenvectors as
ατ , βτ and γ τ . Similarly, the eigenvalues of the conditional SGS stress production
tensor, 〈P a

ij |ur〉, are denoted as αP , βP and γP , ordered such that αP � βP � γP ,
and the corresponding unit eigenvectors as αP , βP and γ P . In order to characterize
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Figure 23. Geometric alignment of the measured conditional SGS stress and the conditional
SGS stress production conditional on (a) ur
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3. The alignment angles are small for
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Figure 24. Eigenvalues of the conditional SGS stress conditional on (a) ur
1 and (b) ur

3. The
magnitudes of the eigenvalues increase with the resolvable-scale velocity.

the geometric alignment between the eigenvectors of 〈τ d
ij |ur〉 and 〈P a

ij |ur〉, three
angles, θ, φ and ξ , are defined as θ = cos−1(|γ P · γ τ |) (the angle between γ P and γ τ ),
φ = cos−1(|βP · βτ |), and ξ = cos−1(|αP · ατ |).

The geometric alignment results for 〈τ d
ij |ur〉 and 〈P a

ij |ur〉 are shown in figure 23.

For 〈τ d
ij |ur

1〉 and 〈P a
ij |ur

1〉, the values of θ, φ and ξ are generally less than 10◦ and

weakly depend on ur
1, indicating very good alignment. Figure 23(b) shows that 〈τ d

ij |ur
3〉

and 〈P a
ij |ur

3〉 are aligned well when ur
3 is positive but are less well aligned when ur

3 is

negative. Because 〈τij |ur〉 is much less anisotropic and 〈τ d
ij |ur

3〉 and 〈P a
ij |ur

3〉 are small
when ur

3 has large negative values, the alignment angles are less well defined.
We also examine the effects of advection and buoyancy on the conditional SGS

stress by including these terms in the alignment calculation. The alignment results
for 〈τ d

ij |ur〉 and 〈P a
ij + Aa

ij |ur〉 and 〈P a
ij + P a

Bij |ur〉 are also computed, where Aa
ij is the

advection term of τ d
ij and P a

Bij = PBij − 1
3
PBkkδij . The trends and the magnitudes of

the alignment angles (not shown) are very close to those shown figure 23. Therefore,
introducing the advection term and the buoyancy production generally has a negligible
effect on the geometric alignment.

The eigenvalues of 〈τ d
ij |ur

1〉 and 〈τ d
ij |ur

3〉 conditional on ur
1 and ur

3 are shown in
figure 24. The eigenvalues ατ and γτ generally depend on ur

1 and ur
3, and the

magnitudes generally increase with ur
1 and ur

3, indicating that the SGS turbulence
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Figure 25. Ratios of the eigenvalues of the conditional SGS stress and the conditional SGS
stress production conditional on (a) ur

1 and (b) ur
3. The buoyancy production is included in (c).

is more anisotropic when both ur
1 and ur

3 are positive. The magnitude of αβ is
generally small and weakly depends on ur

1 and ur
3. In order to characterize the

eigenvalue relationship between 〈τ d
ij |ur〉 and 〈P a

ij |ur〉, we plot the ratio of ατ/αP and
γτ/γP conditional on ur

1 and ur
3 in figures 25(a) and 25(b), respectively. The ratio of

eigenvalue βτ and βP is not shown because both of them are small. The ratios ατ/αP

and γτ/γP depend both on ur
1 and ur

3, and the dependence on ur
1 is generally weaker

than on ur
3. The eigenvalue ratios of 〈τ d

ij |ur〉 and 〈P a
ij +Aa

ij |ur〉 are also computed (not
shown). The results are similar to those in figure 25(a, b) because the magnitude of
the advection is small. The eigenvalue ratios of 〈τ d

ij |ur〉 and 〈P a
ij +P a

Bij |ur〉 conditional
on ur

1 shown in figure 25(c) have larger variations than those in figure 25(a). The
results of 〈P a

ij + P a
Bij + Aa

ij |ur〉 are close to the results of 〈P a
ij + P a

Bij |ur〉 (not shown).

The overall similarity between 〈τ d
ij |ur〉 and 〈P a

ij |ur〉 can be quantified using their
contraction,

〈
τ d
ij

∣∣ur
〉

:
〈
P a

ij

∣∣ur
〉

=

〈
τ d
ij

∣∣ur
〉〈

P a
ij

∣∣ur
〉∣∣〈τ d

ij

∣∣ur
〉∣∣∣∣〈P a

ij

∣∣ur
〉∣∣ . (6.3)

If the two tensors are perfectly aligned and their eigenvalues are proportional,
the contraction has the value of one. The results in figure 26(a) show that the
〈τ d

ij |ur
1〉 : 〈P a

ij |ur
1〉 is close to one and weakly depend on ur

1. The values in figure 26(b)
are also close to one and weakly depend on ur

3 when ur
3 is positive, but decrease with

increasing magnitude of ur
3 when ur

3 is negative. Again, for negative ur
3, the eigenvalues

of 〈τ d
ij |ur

3〉 and 〈P a
ij |ur

3〉 are generally small and 〈τ d
ij |ur

3〉 is less anisotropic, thus the
alignment results are less well defined. The results also show that including the
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Figure 26. Contraction of the conditional SGS stress and the conditional SGS stress
production conditional on (a) ur

1 and (b) ur
3. The effects of advection and buoyancy production

are also included and are generally small.

advection term has little effect on the contraction. However, including the buoyancy
production rate causes the contraction to decrease and results in a stronger dependence
on ur

3. Therefore, in the presence of buoyancy, τ d
ij /t	 is probably a better model for

the sum of the pressure destruction, buoyancy production and advection. From a
modelling point of view, because both 〈τ d

ij |ur〉 and 〈P a
ij |ur〉 are small for negative ur

3,
it is probably more important to model correctly their magnitudes than orientations.

7. Conclusions
In the present study, we use field measurements data in the convective atmospheric

boundary layer to analyse the subgrid-scale turbulence. The necessary conditions for
LES to predict correctly the one-point resolvable-scale velocity JPDF are that the
SGS model reproduces the conditional means of the SGS stress and the SGS stress
production rate. The conditions highlight the importance of the conditional energy
transfer from the resolvable to the subgrid scales and the production rate of SGS
shear stress.

Analyses of the conditional SGS stress and the conditional SGS stress production
using the field data show that they are closely related to the surface-layer dynamics.
Specifically, the updrafts generated by buoyancy, the downdrafts associated with the
large-scale convective eddies, the mean shear, and the length scale inhomogeneity
play important roles in the behaviours of 〈τij |ur〉 and 〈Pij |ur〉.

The results show that when ur
3 is positive (updrafts), the subgrid-scale eddies move

upward and are on average stretched in the vertical direction owing to shear and
buoyancy acceleration. Under such conditions, all three components of the normal
SGS stress gain energy through the spectral transfer. However, τ33 loses energy to
τ11 (and τ22) through inter-component exchange, resulting in anisotropy in the SGS
stress. These processes are enhanced with increasing ur

3 owing to stronger vertical
shear and buoyancy acceleration as well as the advection effects. While 〈P33|ur

1, u
r
3〉

generally depends weakly on ur
1, 〈P11|ur

1, u
r
3〉 depends on ur

1, because a larger ur
1 causes

stronger vertical shear, further increasing the level of anisotropy. For negative ur
3, the

subgrid-scale eddies associated with the returning flow of large convective eddies
move downward and are on average compressed in the vertical direction owing to the
presence of the ground. The spectral transfer is negative (conditional backscatter)
under such conditions. However, τ33 gains energy from τ11 (and τ22) through
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inter-component exchange. These processes are also somewhat enhanced by increasing
the magnitude of (negative) ur

3, resulting in nearly isotropic SGS stress. These processes
depend weakly on ur

1 because the vertical shear is weakened by the returning flow.
Representation of the conditional SGS stress in the Lumley triangle also shows

similar trends for anisotropy. In general, the anisotropy is weak for negative ur
3 and is

much stronger for positive ur
3. For positive and negative ur

1 values, 〈τij |ur
1, u

r
3〉 is close to

axisymmetric with one large and one small eigenvalue, respectively, perhaps reflecting
the shear and buoyancy effects. The results for the SGS shear stress 〈τ13|ur

1, u
r
3〉 and

the production term 〈P13|ur
1, u

r
3〉 are consistent with the dependence of the anisotropy

on ur
1 and ur

3. The magnitude of 〈P13|ur
1, u

r
3〉 depends on ur

1 and is enhanced by positive
ur

3. Comparisons of the results for different array configurations (	/z and −z/L) show
that both grid anisotropy and the stability parameter (−z/L) affect the anisotropy
of the SGS stress. The anisotropy of 〈τij |ur〉 is argued to be important for correctly
predicting the mean velocity profile and the streamwise velocity variance. The results
also show that there is significant similarity between 〈τij |ur〉 and 〈Pij |ur〉 when ur

3 is
positive. This is further evidenced by the small angles between their eigenvectors (less
than 10◦) and high values of the normalized tensor contraction (>0.9).

We perform systematic tests of several current SGS models. The Smagorinsky
model can predict well neither the conditional mean of SGS stress nor its production.
It can predict quite well the trends of some shear stress components, but not the
normal components, and can predict the trends of some normal components of
conditional SGS stress production, but not the shear components. The magnitudes
of these components are generally poorly predicted. The level of anisotropy is also
severely under-predicted.

The nonlinear model (Leonard 1974) can predict reasonably well the trends of
some normal stress components, but not the shear components, and can predict
the trends of some normal components and shear components of the conditional
SGS stress production rate. It over-predicts the conditional backscatter. Unlike
the Smagorinsky model, the nonlinear model over-predicts the level of anisotropy.
The mixed Smagorinsky–nonlinear model does not show significant improvement. The
deviatoric part of the mixed model has an improved performance. It can predict most
components of the conditional SGS stress and the conditional SGS stress production
quite well. Unfortunately, 〈τ13|ur〉 is poorly predicted, which is very important for
LES in the surface layer. Although the anisotropy is over-predicted, it is closer to the
measurements than the mixed model and the nonlinear model.

The predicted 〈τ13|ur〉 using Kosvić’s nonlinear model is improved over of the
deviatoric mixed model, but the rest of the components of the conditional SGS
stress and the conditional SGS stress production are less well predicted. It also
under-predicts the magnitude of the conditional SGS stress when the mean energy
transfer is matched. The level of anisotropy is also under-predicted compared with
measurements, but the prediction is improved over that of the Smagorinsky model.

Using the measured 〈τij |ur〉 and 〈Pij |ur〉 and their model predictions, the deficiencies
in current LES results, such as the over-predictions of the mean velocity profile and
the streamwise velocity variance, and the under-prediction of the vertical velocity
skewness are linked to the inability of the SGS models to predict 〈τij |ur〉 and 〈Pij |ur〉
correctly. Specifically, the former is related to the under-prediction of the anisotropy
of 〈τij |ur〉 and the latter is due to the under-prediction of the dependence of 〈P33|ur〉
on ur

3 and the asymmetry in the dependence.
The analyses of the conditional SGS stress and the conditional SGS stress

production rate can serve as an important guide in developing improved SGS models.
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In particular, the understanding gained on the characteristics of the SGS stress
and its production and the deficiencies identified of SGS models in predicting these
characteristics can be used to improve specific aspects of LES results that are crucial
to a given application. We emphasize that although the testing of the SGS models
performed in the present study is a priori in nature, the linkage between the modelled
terms and resolvable-scale velocity JPDF is strong because the analyses use the JPDF
equation. Therefore, the test results can be used to identify the possible causes for
LES deficiencies. Nonetheless, it would be very useful to carry out a posteriori testing
of SGS models by comparing model predictions of 〈τij |ur〉 and 〈Pij |ur〉 from actual
LES with measurements.
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